W " @ad ANIE
A \ &, COMPO

CONFINDUSTRIA JELETTR

NENTI
ONICI
i)

Machine Learning on Resource

Constrained Microcontrollers
Gianluca Filippini

EAEAL / ML specialist

EBV Elektronik

Human “ripples” on MCU+AI applications "@P AVIE

l COMPO
JELETTR

oz
852

Hurrlg_n-l\{!achine Interaction Transportation

3

&Ls

ht shoulder

faght fip

eeeeeeee

17 Pose Keypoints
Returned by PoseNet

TOyS & https://www.scienceda_il.C(.)m/reIeases/2020/06/200612172204.htm 450 SO o
» { EdUCational https://www.ft.com/content/15f0123e-3b7d-11ea-b84f-a62c46f39bc2 e .
AU 75), v = Iy 300
A , : ‘*wf; 3 Precision ‘ L Il =
) o # b BN \#.\ Agriculture w | =
" | S) Water S \\ AR 5 g
& | » s v * AN ! 50 @ L
-~ i l tagr RY L) AT \; o Time

nnnnnnnnnnnnnnnnnnn

Part Pixar, Part Roomba: Meet Moxie, the
Pasadena-Built Learning Robot for Children

NILM2020

http://nilmworkshop.org/

ML Application: Development & Deployment "@PANE

k NENTI
JELETTRONICI
i)

TrueRNG

Cryptograph
ypEncgyptE)nx; Decryption

https://www.c-sharpcorner.com/blogs/mlops

Train Model Package Model Validate Model Deploy Model
Access control

Authentication

Blockchain

Physical Security
Glitching Hw Attack

Retrain Model

Phase 1 - Training : will generate a FP32 model Secure Boot / Secure FS

Phase 2 - Optimize : model is Quantized/Optimized for a INTx precision Data ownership / Copyrights
Phase 3 - Inference: On microcontroller after deployment

hyperparameters
g | — AR User App
.. o
Valcate a@-{ggg ?&Z‘i’ﬁéa} s Opsmization Sensors
runing
o Intermediate CPU/GPU
O PyTorch Quantization Binary I/Os
¥ TensorFlow @Xnet (e) Representati Inference
Keras,_.ysgil.efpfdedm (-bin .h) Engine memory &
Fine Tuning Storage

ARM

https://www.eetimes.com/ai-sound-recognition-on-a-cortex-m0-data-is-king/
https://www.darkreading.com/edge/theedge/glitching-the-hardware-attack-that-can-disrupt-secure-software-/b/d-id/1336119

B W0

ML Application: Development & Deployment

https://www.c-sharpcorner.com/blogs/mlops

Train Model Package Model Validate Model Deploy Model Monitor Model

Retrain Model

Phase 1 - Training : will generate a FP32 model

Phase 2 - Optimize : model is Quantized/Optimized for a INTx precision

Phase 3 - Inference: On microcontroller after deployment
g hyperparameters
I |
’ Valdate a@-{

)

@ NN
%‘Q model
N) -

® (trained)

00 ®

O PyTorch
¥ TensorFlow @Xnet
Keras Caftfe

./.i/.)' PaddlePaddle

Model
Optimization
(Pruning)

Quantization
(PTQ/ QAT)

Fine Tuning

https://www.eetimes.com/ai-sound-recognition-on-a-cortex-m0-data-is-king/
https://www.darkreading.com/edge/theedge/glitching-the-hardware-attack-that-can-disrupt-secure-software-/b/d-id/1336119

B W0

TrueRNG
Cryptography

Blockchain

Access control
Authentication

" &g ANIE

k COMPONENTI
JELETTRONICI
i)

Encryption’/ Decryption

Physical Security
Glitching Hw Attack

Secure Boot / Secure FS

Data ownership / Copyrights

User App
Intermediate CPU/G PU

Binary
Representati Inference
(.bin .h) Engine

ARM

Sensors

|/Os

memory &
storage

TinyML: Machine Learning for deeply embedded devices ‘@ ANVIE

k NENTI
JELETTRONICI
i)

An emerging area in ML that addresses deployment of models that run on small,
. low-powered microcontrollers. Became a “de-facto reference” also thanks to the
T|nyM L wide adoption of the book written by Pete Warden and Daniel Situnayake.

Machine Learning with TensorFlow Lite on
Arduino and Ultra-Low Power Microcontrollers

OREILLY"

https://www.tinyml.org/

Todays is part of study courses from universities:

&

"‘4:.35‘6* TI r—]‘y l\/] L ARDUINO

Vijay Janapa Reddi Pete Warden Daniel Situnayake
Associate Professor Engineer Founding TinyML Engineer
@ Hardward Univ. @ Google @ Edge Impulse

C5249r: Tiny Machine Learning

Pete Warden & : . : .
Biiniel Shdndsiike Applied Machine Learning for Embedded loT Devices

https://sites.google.com/g.harvard.edu/tinyml/home

Constrained microcontrollers have restricted resources: power, memory, storage and CPU. We use specific
variants of the main ML tools to address these devices.

*The TensorFlow Lite converter, which converts TensorFlow
1F 1 models into an efficient form for use by the interpreter, and can
TensorFlow TensorFlow Lite introduce optimizations to improve binary size and performance.

https://www.tensorflow.org/lite/guide

. . °The TensorFlow Lite interpreter, which runs specially optimized
https://www.tensorflow.org/lite/microcontrollers D P yop

models on many different hardware types, including mobile

Daniel Situnayake: phones, embedded Linux devices, and microcontrollers.
BexA How do | train my first machine learning model?
https://www.youtube.com/watch?v=DhHw17Z-|vI https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/

Tensorflow Lite Micro: an optimized sw architecture "@p ANVIE

\ COMPONENTI
JELETTRONICI
i)

The TFLiteMicro article on arxiv.org presents details on challenges, design principles and
implementation of the interpreter running on the MCU (also bare-metal).

. = TENSORFLOW LITE MICRO:
htt PS //a FXIV. org/a bS/ZO 10.08678 EMBEDDED MACHINE LEARNING ON TINYML SYSTEMS
Client API
The framework does not require operating system) Robert David Jared Duke AdvaitJain’ Viay Janapa Reddi'*
‘ TF Micro ‘ Nat Jeffries ! Jian Li' Nick Kreeger' Ian Nappier ' Meghna Natraj'
support, any standard C or C++ libraries, or dynamic R e e L B
’ ’ @ @
M ABSTRACT

m e m O ry a I | Ocat I O n - fe at u res t h at a re CO m m O n |y Model Memory Operator |t Deep learning inference on embedded devices is a burgeoning field with myriad applications because tiny

Loader Planner Resolver embedded devices are omnipresent. But we must overcome major challenges before we can benefit from this

H ity. Embedded { ; ined. The bile hibi
taken for granted in non-embedded system } ! i iy Sl g
Operator API the machine-learning (ML) models and associated ML inference framework must not only execute efficiently but

also operate in a few kilobytes of memory. Also, the embedded devices® ecosystem is heavily fragmented. To
maximize efficiency, system vendors often omit many features that commonly appear in mainstream systems,
including dynamic memory allocation and virtual memory, that allow for cross-platform interoperability. The
hardware comes in many flavors (e.g.. instruction-set architecture and FPU support, or lack thereof). We introduce
TensorFlow Lite Micro (TF Micro). an open-source ML inference framework for running deep-learning models
on embedded systems. TF Micro tackles the efficiency requirements imposed by embedded-system resource
constraints and the fragmentation challenges that make cross-platform interoperability nearly impossibl

framework adopts a unique interpreter-based approach that provides flexibility while overcoming these chal
This paper explains the design decisions behind TF Micro and describes its implementation details. Al g
present an evaluation to demonstrate its low resource requirement and minimal run-time performance ove
https://arxiv.org/pdf/2010.08678.pdf [PPF
ARM'’s white paper “Accelerating Machine Learning

Compute for the I1oT and Embedded Market” Hast{ORNoe| Jacjetievice
introduces results in embedded hw optimization to
accelerate execution of TF models. These .
improvements are both software and hardware ! 1t N

(heterogeneous)

domains. There are restrictions on supported ops:

Operator
Implementation

https://www.tensorflow.org/lite/guide/ops_compatibility

Operator
Imptéfﬁen‘m;__ﬁon

v2 [es.LG] 20 Oct 2020

Ethos-U55
microNPU

Cortex-M
CPU

https://armkeil.blob.core.windows.net/developer/Files/pdf/ethos/Arm_Accelerating ML_Compute for Embedded Market white paper.pdf

Tensorflow Lite Micro: improving execution on MCU "@p AVIE

A\ (PR TRONIC
Vendors have produced custom optimizations by improving few key s D> B,
components of the TFLite framework. Optimizing low-level libraries and
rewriting specific operators with assembly instructions that are supported on

the device we improve the execution of the ML model.

GCC Arm® 8-2018-g4

| | DSP Optimized (-02) | Reference Kernel (-02)

Label Image 186 ms 370 ms
CIFAR-10 61 ms 229 ms 350

400

300

IAR EW 8.32.3

| DSPOptimized Original |

200

Label Image 217 ms 307 ms
CIFAR-10 67 ms 159 ms 150
100
Keil MDK 5.27 o
0

Label Image 178 ms 198 ms GCC ARM 8 IAR 8 MDK 5
CIFAR-10 64 ms 87 ms

250

B DSP Optimized W Reference Kernel

N NG00 npsicar cal

GLOW: Graph Lowering Compiler for Hardware Accelerators

A machine learning compiler that accelerates the performance
of deep learning frameworks on different hardware platforms.

Started by Facebook (~2018) as a tool to seamlessly deploy
PyTorch models on a large variety of hw (from server to
embedded devices)

https://ai.facebook.com/tools/glow/

The original presentation provides these motivations:

CPUs and GPUs are inefficient

CPUs and GPUs work hard to extract parallelism.

e Matrix operations are very regular and expose lots of
parallelism. Easy to accelerate.

e No need to waste power/area on useless features.

Accelerators are efficient because they are specialized
* Have many arithmetic execution units.

» Use dedicated local memories.

* Reduce the arithmetic bit-widths.

» Use a specialized programming model.

|

Glow ‘

'
—
—_—
!
|
o
<
!
—_—
1
o
o B
A
I
—_—
£
-
e
-
—
S
_—
e
LV]
—
e
co
—_—
el
[N
<
[
n}

ON

C+

PyTorch I

Hardware Accelerators

Graph Lowering Compiler for

" &g ANIE
\

COMPONENTI
JELETTRONICI
i)

https://arxiv.org/abs/1805.00907
Glow: Graph Lowering Compiler Techniques for

Neural Networks

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein,
Jack Montgomery, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo Park,
Artem Rakhov, Misha Smelyanskiy, Man Wang
Facebook

Abstract

This paper presents the design of Glow. a machine

learning compiler for heterogeneons hardware. It is
a pragmatic approach to compilation that enables
the generation of highly optimized code for multi
ple targets. Glow lowers the traditional neural net-

INPUTS

COMPILER

NX

optimizations in order to execute neural networks effi-
ciently on DSAs. Thiz paper describes some of these
techniques as implemented in Glow, an open-source
machine learning compiler framework for heteroge-
neous hardware.
Iraditional machine learning frameworks iterate
over the nodes in the graph and execute them one
TARGET-SPECIFIC -visitor method of
CODE GENERATOR ditional processors.
sworks have started
lers [2/[3] that exe-
| on the increasing
he need for energy
ile devices, and the

Backend A

i

Optimizer
Glow Core

APl — Quantizer

CodeGen

ic architectures, we

frameworks of the
tctive programming
= ates compilers for

||

PGO

r parts of the soft-
e PyTorch El and
1 graph and a code
e name Glow is an
-which iz the main

- for generating effi-
The Glow low-level eraph will not renlace

Backend C

CPU Backend

cient eode.

GLOW: Model Compilation Pipeline

Target

IR

raph High-level
optimizer

Performs high-level graph
optimizations. Focus on
linear-algebra kind of
optimizations.

Performs low-level IR
optimizations. Focus on

optimizations.

Low-level
. 4 —_—
optimizer

buffer and memory reuse

Glow

Accelerator
backend

Graph Lowering Compiler for
Hardware Accelerators

" &g ANIE
\

COMPON
AJELETTRO

Generates machine code by compiling NN layers optimized

for a specific MCU target

Performs target-specific
lowering and optimizations for
specific accelerator.

Parses graph at compile-time and the compiled library
contains only the required optimized code

High-Level Graph

Static-shaped data-flow graph.

e Enables high-level domain-specific
optimizations.

e Example: Change the matrix layout,
merge batchnorm into cony, eliminate
numeric re-scale

Varuahle

e g0 dita”™

il fate] & 3 % 224 5 2040
visihility - public

users : |

Dulpul
I ™)

Low-Level Instructions

e Linear instruction-based address-only
representation.

e Operands are typed pointers to buffers.
e Memory optimizations: Instruction
scheduling, Buffer sharing, shortening
buffer lifetime.

declare |

$input = WeightVar flocat<10 x 5000>= mutable
$rnn initial state = WeightVar float<1l0 x 20> muta
Fron_Whh = WeightVar float<20 x 20> mutable
tresult = WeightVar float<100 x 500> mutable

Graph Lowering

e ML frameworks support hundreds of op
kinds, implemented in C and CUDA.

e Writing hundreds of ops for accelerators
isn’t scalable.

e Glow lowers complex high-level nodes
into primitive nodes.

t,r——._.___‘-—u._]
(" Gragises |
SGD
mame wephisl
Gradicmt Host=<6 ¥ (>
Welght ; flost<t x 12

Weight)

Inpes Variahie Vartie } L1 Eecay ; (0D e
Tratopose name : “vony_filler” name : “cony_bis" 12Becuy © OO0 e+HE
name - gou__convl oupot ! fod<bd 5 757 8 3n mw&*% program { LewmingRar: : 5 0000003 o
s Sl e Rl w:u_f:l* ﬂ_:nmﬁ* X 0 = allocactivation { Ty: float<l1l0 x 500>} 'é”ﬁlﬁ's"i’;?-‘.:ﬁ”m““ "'_;‘;'_"I
N o x S5 x T n | | e L usees: 1 X 01 = extracttensor @out %X 0, @in %input { Offs Tl;emn_ it i
=T R SHpee Jsk o) tmergeLHS11 = allocactivation { Ty: float<l100 X 5 'Ph":j“e"" 'ﬁ;wﬂ'“?
.])lh.l.l!d i 1
i'll \ imergelHS111 = splat @out %mergelHS11 { Valus: 0.0 “ 4 S s
m""*m_ i tmergelLHS112 = inserttensor @inout %mergelHS11, @i o
’ o | e g ot | tbigMatMull res = allocactivation { Tv: £loat<100 BEFORE AFTER
P

il

GLOW: Embedded Hardware accelerators "@P ANIE

\ NENTI
JELETTRONICI
i)

O D 1»% MCU architectures are starting to include specific hw blocks to

accelerate execution of NN and more specifically CNN (conv net)

Vendors are extending the support of Glow for Tensorflow models via the
intermediate format of ONNX.

System Control

e Upto 300 MHz Arm | S
Cortex-M33 core

Glow with target-specific eUp to 600 MHz
support Tensilica HiFi-4 DSP

4.5 MB of SRAM ' mm _
eAudio and sensor S — T
processing FPU.

96 KB Cache

Arm® Cortex®M33
(up to 300 MHz)

L J

DSP Accelerator

Crypto Engine
TrustZone®-M

OGlow

Glow Bundle

Device

GLOW: Embedded Hardware accelerators "@p AVIE

k NENTI
JELETTRONICI
i)

Faster execution of the CNN model i.MX RT1060 CIFAR010 (32x32 grayscale)
is important to improve overall Arm Cortex-M7@600Mhz, NO DSP 160
performance on data ana.IyS|s but MX RT685 0 ~15X
also on energy consumption. Arm Cortex-M33@300Mhz, Tensilica HiFi4
o 120
For loT+Ai projects we can run the _ 3
inference in a shorter time and 1500 Comparing RAM and Flash Usage gmo
return to a power-saving state RAM (Koytes) g 80
immediately 1000 m Flash (Kbytes) s

(o))
o

Using a dedicated hw accelerator ~3X

might require custom libraries and
custom drivers increasing the
binary footprint of the final

1N
o

500

N
(@)

o
(@)

(-

o TFLite Glow+ Glow+ = T 0
application. RT1060 CMSIS-NN RT685 3 L = 3 Q
. = L = 20
RT1060 (HiFi4) ST S = X =
S

https://media.nxp.com/news-releases/news-release-details/industrys-first-mcu-based-implementation-glow-neural-network/

B IR 0

CNN: a quest for energy efficient hardware

" &g ANIE

k COMPONENTI
JELETTRONICI

i

CONFINDUSTRIA

The most used & powerful type of NN for deeply embedded devices is CNN. These networks heavily involve matrix
multiplication.

Trend for embedded application in vision, audio, medical and signal conditioning is to increase the size of the input
layer for common CNN, but input data size is a key factor for MCU with a low amount of memory.

Matrix multiplication on MCU requires frequent access to external memory. On

standard hardware this is often a triple-nested multiplication loop.

Resolution

32x32

160x160

224224 |

320x240

640x480

VGA Image

q 3

640

Reference

CIFAR-10

Intel Movidius
ImageNet
QVGA

VGA 7

-

(@]
o
=
=
=L
=
L
Q
S

Memory for 128 ch.
(max. intermediate) |

128 KB |
3,200 KB |
6,272 KB |
9,600 KB |

38,400 KB |

matrix_mul{matrix_f32_t #a, matrix_f32_t xb, matrix f32_t #c)

{
uint32_t m = a=->nrows;
uint32_t n = a->ncols;
uint32_t p = b-»ncols;
C=>Nrows = m;
c=>ncols = p;
int 1, 3; ks
for (i1 =8@; i <m; i++) {
for (j = @8; j < ps j++) {
f_t sum = @;
for (K = 8; kK < n; k++) {
sum += a->elements[i * n + k] * b->elements[k = p + jl;
}
c—>elements[i « p + j1 = sum;
i3
}
}

2004.08906v2 [cs.LG] 26 Apr 2020

HCM: Hardware-Aware Complexity Metric
for Neural Network Architectures

Alex Karbachevsky ** Chaim Baskin** Evgenii Zheltonozshkiit* Yevgeny Yermolint

Freddy Gabbay® Alex M. Bronstein

Avi Mendelson *

TTechnion — Israel Institute of Technology, Haifa, Israel
“Ruppin Academic Center, Haifa, Israel,

{alex.k, chaimbaskin, evgeniizh}@campus.technion.ac.il
{yevgeny.ye, bron, avi.mendelson}@cs.technion.ac.il
{freddyg}@ruppin.ac.il

ABSTRACT

Convolutional Neural Networks (CNNs) have become com-
mon in many fields including computer vision, speech recog-
nition, and natural language processing. Although CNN
hardware accelerators are already included as part of many
SoC architectures, the task of achieving high accuracy on
resource-restricted devices is still considered challenging,
mainly due to the vast number of design parameters that need
to be balanced to achieve an efficient solution. Quantization
techniques, when applied to the network parameters, lead
to a reduction of power and area and may also change the
ratio between communication and computation. As a result,
some algorithmic solutions may suffer from lack of memory
bandwidth or computational resources and fail to achieve the
expected performance due to hardware constraints. Thus, the
system designer and the micro-architect need to understand at
early development stages the impact of their high-level deci-
sions (e.g., the architecture of the CNN and the amount of bits
used to represent its parameters) on the final product (e.g., the
ex] a . saving, area, and accuracy). Unfortunately,
all short of supporting such decisions.

Figure 1: Our 3 x 3 kernel 8-bit processing engine (PE) layout
using the TSMC 28nm technology. The carry-save adder can
fit 12-bit numbers, which is large enough (o store the output
of the convolution.

https://arxiv.org/pdf/2004.08906.pdf

CNN: MAX7800 hybrid architecture "@p AVIE

\ NENTI
JELETTRONICI
i)

A specific architecture which includes a dedicated accelerator
for CNN operators and also includes local memory (on die) for g
intermediate results and weights. ARM Cortex-M4F

100 MHz
16 KB cache

CNN accelerator

Clocking

100 MHz RO 32 kHz XO (RTC)
60 MHz RO 7.3728 MHz RO
8-30 kHz RO

Parallel processors

RISC-V Smart DMA Max layers 32..64%
. thhili 60 MHz, cache
NOTE: only few key operators are accelerated. Flexibility on iy e r——— acnpuoupu 102
not supported operators still comes from software extension 512 K8 Flash s s Bp— — —
on the main MCU il 3 x IC (Hi-speed) Lxtp TUP 10 3.5 M weights)
SIMO/DVS 2% SPI M/S Data memory I512 KB + 384 KBI
9 x Timers :

° Conv2d (1 X 1’ 3 X 3) 4 x Pulse train G;Ea:l:hzd::' g’:;xé;Zi:s (1;:r3chjr?:egl, streaming)

AES 128/192/256
e Convld(1to9) 1x Wakeup 181 x 181

1-Wi t
ire master (per channel, preloaded)

TRNG -
¢ conVTranSposeZd (3 x 3) paraliel camere Fen 10 bIEADe 1-Up to 64 with pooling every other layer, up to 32 with no pooling
B AngooI' Maxpool (up to 16 x 16) UniqueID SWD 4LIPOWEF Ccmparatnr 2-Weighlscanbel—bit,l—b\l,mhn,orB—b’it,seiectableperlauer
* Flatten, Linear
* Activation: RelLU, Abs, None INPUT CHANNELS OPTIONAL IN-FLIGHT OPERATIONS CONVOLUTION OUTPUT CHANNELS
* Elementwise (up to 16) add, sub, binary OR, binary XOR
« Sequence Pool / Eltwise / Conv / Act counts as one layer . ' \ | ¢)
* 1, 2,4, and 8-bit weights selectable per layer, 8-bit bias oG oy { 0 CORIVELUTION
(optional) >

Y

* 8-bit data (clipping at activation stage) with optional 32-bit

—
output for last layer T~ '
* Output shift (<<, >>) per layer (before clipping) ELEMENT-WISE e '

* Padding0, 1, or2

e Stride up to [16, 16]

* RISC-V core as “Smart DMA”
* Streaming mode with FIFOs

/

POOLING

CNN: MAX7800 streaming mode (e

JELETTRONICI

— CAME W
CONFINDUSTRIA

: MAXT 8000
L 5 ; [msepo |
- L-I s oo nJ ———
e wr2x8 [{m|ofo 768 T 3723z 1BRD)
- ololon x A4 VT
¢ 1L /t 32 768z [ERTCO) o A E’“';“Pu W
- 8Kx32 i PODL CACHE m& s WKz TR 100Kz (CMA) o COMOLUTICMAL MELRAL NETWORK
] @ . :
® U mw | H{am nj | ExTERNAL CLOCK f— NG -
et so72:6 elm|alo 768 _—
T ololnn % B0MHz (150]
" pooL cacke wared b s JLBH RISCY BVEZ) e 1
- = = - -.| SERIAL WIRE DEBLG Il--
: s72:8 |{nfn HJ A RTCWITH = |
) 1218 aaln s AHOUT WAKELP TIVER -] QE 15 MASTERSLAVE e
T 72 |
POOL cacee oard b rms FOWER-ON RESET, NEMORY 3% HIGH-SPEEDE
L. | EROWKOUT MONITOR " gg WASTER !‘"
@ *F’ J RETH * SUPPLY VOLTAGE SoTTe | P !
307218 o|o|o MOMITORS o B
3 sor2zs {alnln 768 : Eg LWIRE LART
“Quadrants” can be afaloh 7| . ¥ n;”| AE a0 o s
individually disabled e - Vasai——* SAMIIHE-EQE |14 8 = mows | LN e
indiviaually disabile _ S onrred b A - g-_i SE | 2 ZWIREUART J" TIMERS P ‘\\I—-l,/ FUNCTION
x4 Vi I SRAMIIHE |l T | CAFTURES © o uPTDA2
g ic |, compaRe
(2 smarescn VasmuA SRAMZUEKE |fesl S| R | ZWRELUART LPTIMERS
M . - = SERIAL VWIRE
Ve . o) DERUG
-+ SRAMIIEKE | oyl €8 | 0y 5P MASTERSLAVE
(P marae A g 55 s
. N L £
x4 (Region) ' CACHE 160 | fu—s| = i 5
SIMO VDLTAGE i | Wie MASTER (0N em I
: LB RecuiaTion = — LRET
D NAMIC VOLTAGE BODTROM | (=~ | LPUART
Vst SCALING, .-.| 4xPIASETRANENGINES o> PARALLEL
v i m[ERFEE
REED. A FOWER CONTRIL P, | T BT TIVERS :
TEHEML e "’| WAKE-IP TIMER I"' 11hire
WREmo B+ | T ECH I-A ADC
12 WATEHDOG | T YRS | MIOROPOWER
e o — TWER | .'| kbt |" CONPARATORS
. 1 ﬂ| PARALLEL CAMERA 1
URIQUE 1D o EXTERNAL
Mssh [INTERFACE i T e
—_— oL * SECURITY .] g:d
—. - Viisice AES-128152:256 CHAWNEL i
.|_| - R EFE T / Vopow
11 WoORER ACCELERATOR M- Yon
[
----- — = T SECLIRE NVKEY - [l
_= M TORE SECURE BOOT 4 MIGROPOWER COMPARATORS ™
— v MGTAL = -
[3l TRUE RARDOM MUMBER 7
= VO VOMEMARES ANALDG || e e garom niy | ._%” B
Layer n ~IY #=

Sensor

PDF

https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf

CNN: MAX7800 performance "@p AMIE

NENTI
A ELETTRONICI
Keyword spotting (KWS) and Face detection/identification are few of the most common use cases for TinyML. 00

Custom hw architectures for CNN will provide an important gain in speed and energy used to perform the sw task in
comparison to pure-software implementation. Speed improvements of >100x are doable with a small tradeoff on
accuracy (<1-2%)

Inference Time ms Inference Energy m)J
2000 700
1800
600
1600
1400 500

1200 60x faster, 300x lower energy

8
SORAM

1000
200)

800 _
600 200

400

l 100
200
0 = 0 - B

MAX78000 MAX32650 STM32F7 MAX78000 MAX32650 STM32F7
50x faster, 1000x lower energy
Network | MACC MAX78000 MAX32650 STM32F7: ;ﬁi :;‘fg;r; ope;aéforsrss/second
: with CMSIS-NN, running
CNN at 50 MHz! Cortex-M4 at 120 MHz Cortex-M7 at 216 MHz axoct same INTS pebvork as

MAX78000

@ KWS20 | 13,801,088 | 2.0ms, 0.14m) 350ms, 8.37m) 123ms, 47.5m)J3 e i menddl
STMF746NG, external SDRAM at

FacelD 55,234,560 1389ms, 0.40m) 1760m5, 42.1m) 754ms, 348 + 116mJ4 25% typical active power

https://github.com/MaximIntegratedAl

o e

There is One More Thing ... "@P AMVIE

k JELETTR

(@) 4
g 23
o=

Rita Cucchiara

RITA (Master Degree in Electronic Engineering '89;
CUCCHIAR PhD in Computer Engineering '93 - University
' of Bologna).

La rivoluzions tecnologlca
cha sta glh camblando || monde

Since 2005 is Full Professor of Information

Processing Systems at the University of La forza dell’Al e nella forza di
. L.INTELﬁéE Modena and Reggio Emilia, where she is chi I’ha creata e di chi lo fara in
N supervisor of the Aimagelab Laboratory and ye . epe
NQN E L the future "Al Academy"; her main expertise fl_'lturo' L |.nteII|genza Artificiale
ARI-EI_CMLE are Artificial Vision and Deep Learning with Slamo nol.
B more than 350 publications in peer review and
international Journals.] : i«,

She is also member of the IIT (Italian Institute
of Technology) Board of Directors and from
2018 she is Director of National Labs AlIS -
Artificial Intelligence for Intelligent Systems
for CINI (National Interuniversity Consortium
for Information Technology)

.'_@>A1ma eLab . _ . o }Q https://www.mise.gov.it/index.php/it/strategia-intelligenza-artificiale/contesto
e g https://aimagelab.ing.unimore.it/imagelab/ poF | https://www.mise.gov.it/images/stories/documenti/Proposte-per-una-strategia-italiana-2019.pdf

B IR 0

" &g ANIE

k COMPO

NENTI
JELETTRONICI
i)

Thank You.

ai@ebv.com

Gianluca Filippini
EBV / FAE -ML Specialist

