Webinar

Tecnologie per l'igienizzazione degli ambienti industriali, residenziali e dei trasporti:

sostenibilità, vantaggi e opportunità

22 settembre 2020

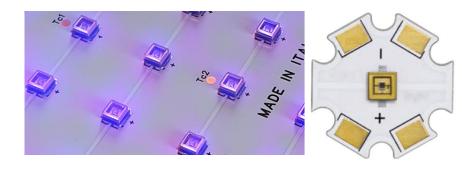
Progettazione elettronica e termica delle soluzioni atte all'igienizzazione

Alberto Busani – Direttore Tecnico FUOCOFREDDO Dario Russo – Direttore Scientifico DAN TECNOLOGIE

CHI SIAMO:

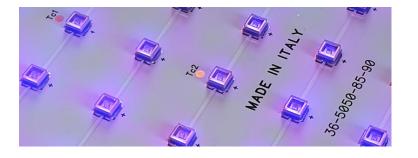
FUOCOFREDDO ORIENTATA AL MONDO DELLA TECNOLOGIA ELETTRONICA APPLICATA AL MONDO LED (LED UV) **DAN** ORIENTATA ALLA PROGETTAZIONE E SCIENZE DEI MATERIALI APPLICATA AL MONDO LED UV

- Staff con più di 20 anni di esperienza nella progettazione e produzione elettronica Led UV (in particolare UV-C). Esperienza in ambito fotometrico.
- Staff con più di 15 anni di esperienza nella progettazione e produzione elettronica Led lighting.
- Staff con più di 15 anni di esperienza nello studio dei materiali per applicazioni UV ed in generale nella scienza dei materiali



Perché abbiamo scelto la tecnologia LED UV ed in particolare quella UV-C rispetto alle lampade a vecchia tecnologia....

TABELLA DI CONFRONTO TRA LED UV-C E LAMPADE A VECCHIA TECNOLOGIA						
CARATTERISTICA	LAMPADE VECCHIA TECNOLOGIA	LED UV-C	NOTE			
CONTENUTO IN MERCURIO	6-200 mg	ZERO	Nessuna necessità di trattamento speciale nel riciclo			
TEMPO DI VITA (ORE)	3/5.000	fino a 50.000 ore	con l'uso dei LED UV-C si tratta di affidarsi ad un buon progetto elettrico/termico del sistema per allungare la vita			
CICLI DI ON/OFF	max 4 al giorno (pena minor durata)	illimitati	Possibilità di funzionare in modo intermittente			
TEMPO DI ACCENSIONE	fino a 15 minuti	istantaneo	Maggiore efficienza			
STRUTTURA	tubo o bulbo	sorgente puntiforme e modulabile a piacimento	Facilità di integrazione e design			
LUNGHEZZA D'ONDA	254nm (nonocrom.) 180-300nm (policrom.)	265-275 nm	più adatti ad essere centrati sullo spettro di massima efficacia germicida. E Nessuna generazione di Ozono!			
DIMENSIONI	da 160mm in su	pochi millimetri	sorgente pressochè disegnabile a piacimento			
EMISSIONE	360°	120/150°	fascio facilmente collimabile e gestibile a seconda della necessità tramite ottiche e parabole secondarie			
ALIMENTAZIONE	110-230Vac (con adeguati driver)	bassa tensione SELV (Tipicamente 6-30Vdc)	facile pilotaggio ed uso anche in ambienti gravosi o in presenza di acqua (Tramite appositi sistemi di protezione al grado IP			
PROGETTAZIONE E DESIGN	limitata da ingombro, dimensioni tensione di pilotaggio, ecc	illimitata e totalmente customizzabile	con i LED non c'è limite al design			
GESTIONE CON NUOVE TECNOLOGIE TIPO IOT	molto difficile	ottimale e integrabile	con i LED non c'è limite al design			


PLUS:

- Esperienza nella progettazione di applicazioni LED UV a 360°
- Esperienza nella conoscenza dei materiali applicati ai LED UV (riflessione, attraversamento, schermatura, durata nel tempo)
- Esperienza nella gestione ottica dei flussi radianti UV (anche e soprattutto UV-C)
- Esperienza nella gestione termica e nel driving dei Led UV
- Laboratori per misure radiometriche, test sui materiali, riflessioni, attraversamento, ecc...
- Esperienza e conoscenza ambito IOT e sistemi di gestione intelligenti e da remoto

PRODUZIONE:

Azienda strutturata per servire in tempi brevi il mercato:

- Prototipazione e produzione 100%
 Made in Italy
- Linee Pick & Place per assemblaggio automatizzato dei Led UV-C e relativa ispezione ottica con sistemi raggi X.
- Controllo qualità al 100%, mediante strumentazioni dedicate ai Led UV
- Buffer stock di oltre 5.000.000 di LED e oltre 300.000 Led UV-C, di vario tipo (da 10mW a oltre 300mW radianti)

ITER DI APPROCCIO PER UN PROGETTO UV-C:

CLIENTE INOLTRA RICHIESTA

VERIFICA FATTIBILITA'

• Mediante impiego di software per il calcolo energetico in funzione del layout di progetto e dei risultati desiderati (tempo di sanificazione, percentuale di sanificazione 90%.... 99,999%)

VALUTAZIONE ECONOMICA

• Offerta economica preliminare corredata da documentazione di progetto di base e calcoli energetici

PROGETTO DEFINITIVO

- tenendo conto del layout di progetto, degli aspetti fondamentali e dei risultati desiderati (tempo di sanificazione, percentuale di sanificazione 90%.... 99,999%). Utilizzo di appositi software e fogli di calcolo predittivi in grado di calcolare:
- Valore energetico radiante e consumato
- Potenza radiante in funzione della lunghezza d'onda più indicata
- Potenza consumata
- Lifetime dei LED e dei materiali impiegati e relativa gestione termica
- Indice di riflessione/attraversamento dei materiali impiegati

INDUSTRIALIZZAZIONE E MESSA IN PRODUZIONE

LA PROGETTAZIONE ELETTRONICA E TERMICA RICHIEDONO:

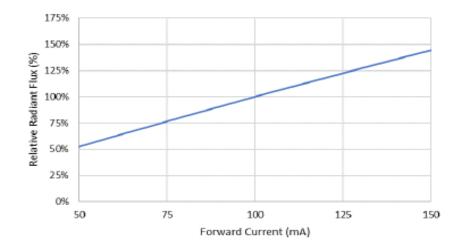
- **1. La scelta di un corretto Led UV**. Per corretto si intende adeguato come caratteristiche di lunghezza d'onda, potenza radiante, potenza consumata, caratteristiche dimensionali ed elettriche
- 2. Risulta necessario creare un «Match» tra le caratteristiche elettriche del Led e un opportuno sistema di alimentazione che tenga in considerazione delle peculiarità dei Led UV. I led UV-C hanno range di Vf importanti.

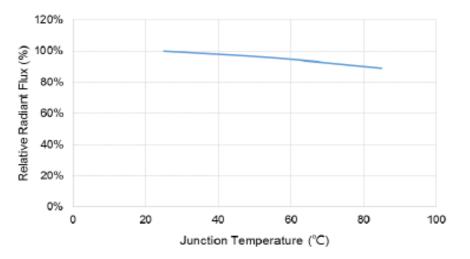
 Questo impone l'impiego di un'alimentazione SEMPRE IN CORRENTE COSTANTE!

Parameter	Symbol	Values		Test Condition	Unit
	Vf	Max.	7.0	If = 100mA	v
Forward Voltage		Тур.	6.3		
		Min.	5.0		
	Фе	Max.	-	If = 100mA	mW
Radiant Flux		Тур.	10		
		Min.	6		
		Тур. 1 0			
Dook Mountaineth	Wp	Max	280	· If =100mA	nm
Peak Wavelength		Min	270		
Viewing Angle	201/2	Тур.	120	If = 100mA	•
Thermal Resistance (Junction-solder)	Rth j-s	Тур.	38.5	If = 100mA	кл

Parameter	Symbol	Values		Test Condition	Unit
	Vf	Max.	7.0	If = 350mA	v
Forward Voltage		Тур.	6.2		
		Min.	5.5		
	Фе	Max.	-	If = 350mA	mW
B. C. J. B.		Тур.	47		
Radiant Flux		Min.	38		
		Тур.	65	If = 500mA	
Peak Wavelength	Wp	Max	280	If = 350mA	nm
reak wavelengui		Min	270		
Viewing Angle	201/2	Тур.	120	If = 350mA	۰
Thermal Resistance (Junction-Solder)	Rth j-s	Тур.	12.3	If = 350mA	кw

Esempi di caratteristiche elettro-ottiche di 2 tipologie di Led

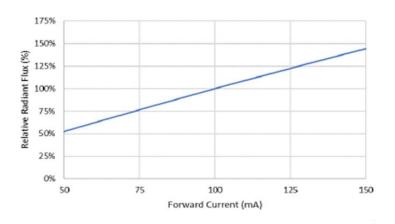


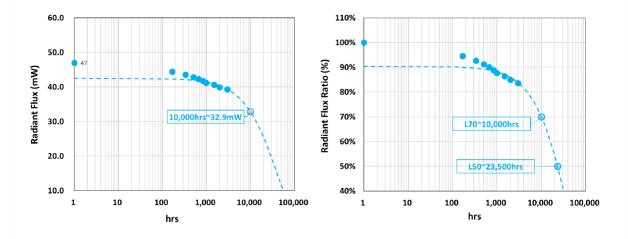

3. Entra quindi in gioco la questione TERMICA:

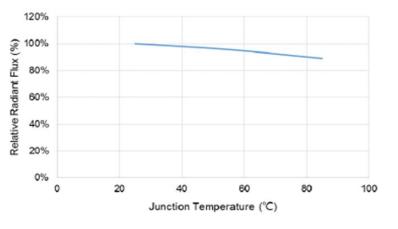
La gestione termica è fondamentale in qualsiasi applicazione Led, ma in particolare nei Led UV-C perché:

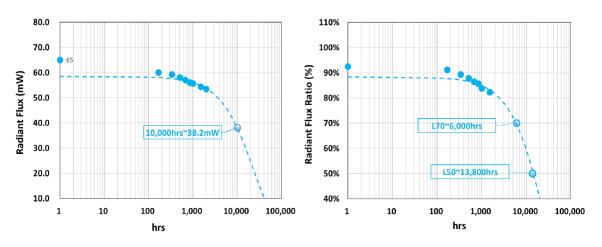
- Il flusso radiante decresce all'aumentare della temperatura;
- La vita del Led decresce all'aumentare della temperatura
- Ma soprattutto perchè <u>stiamo realizzando UN SISTEMA DI IGIENIZZAZIONE</u>. Di conseguenza un leggero abbassamento del flusso luminoso non si può considerare accettabile... l'abbassamento del flusso radiante si traduce immediatamente in *PERDITA DI POTERE IGIENIZZANTE!!*

(25°C Ambient Temperature Unless Otherwise Noted)



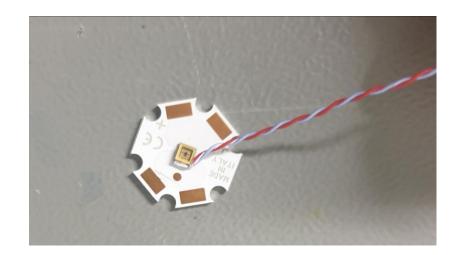

Quindi:


Sia la gestione del driving (corrente costante) che la gestione termica sono e devono essere parte principale e integrante di ogni buon progetto a Led UV.



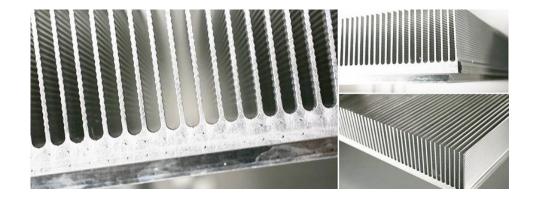
- > L70: 10,000 hrs
- > L50: 23,500 hrs

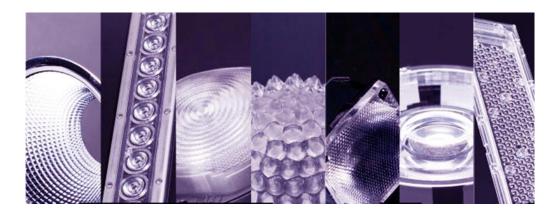
- Test Condition: 500mA @ Ta=25°C
- > L70: 6,000 hrs
- > L50: 13,800 hrs



Da non dimenticare per una corretta e completa analisi termica dei LED UV :

Il tutto deve essere adeguatamente testato in laboratorio mediante opportuni test/strumenti





Alcune considerazioni sulla scelta dei materiali adatti alle applicazioni LED UV....

Ringraziamo tutti per l'attenzione

